
1. Introduction to Algorithms and
Review of Data Structures

Pukar Karki
Assistant Professor

08/05/22 Created by Pukar Karki, IOE 2

Algorithm

● An algorithm is any well-defined computational procedure that
takes some value, or set of values, as input and produces some
value, or set of values, as output.

● An algorithm is thus a sequence of computational steps that
transform the input into the output.

08/05/22 Created by Pukar Karki, IOE 3

What kind of problems are solved by algorithms?

08/05/22 Created by Pukar Karki, IOE 4

Properties of an Algorithm

1.Input specified

2.Output specified

3.Definiteness

4.Effectiveness

5.Finiteness

6.Independent

08/05/22 Created by Pukar Karki, IOE 5

Expressing Algorithms

An algorithm may be expressed in a number of ways:
✔ natural language

– usually verbose and ambiguous;
✔ flow charts

– avoids most (if not all) issues of ambiguity;

– difficult to modify w/o specialized tools;

– largely standardized
✔ pseudo-code

– also avoids most issues of ambiguity;

– vaguely resembles common elements of programming languages;

– no particular agreement on syntax
✔ programming language

– tend to require expressing low-level details that are not necessary for a high-level
understanding

08/05/22 Created by Pukar Karki, IOE 6

The Random Access Machine (RAM) Model

✔ A machine has a CPU and a memory.
✔ Memory :

– An infinite sequence of cells, each of which contains
the same number w of bits.

– Every cell has an address: the first cell of memory
has address 1,the second cell 2, and so on.

08/05/22 Created by Pukar Karki, IOE 7

The Random Access Machine (RAM) Model

✔ CPU

– Contains a fixed numbers of registers,each of
which has w bits (i.e., same as a memory cell).

08/05/22 Created by Pukar Karki, IOE 8

The Random Access Machine (RAM) Model

✔ CPU

– Can do the following 4 atomic operations

1.Register (Re-)Initialization : Set a register to a fixed
value (e.g., 0,−1, 100, etc.), or to the contents of another
register.

08/05/22 Created by Pukar Karki, IOE 9

The Random Access Machine (RAM) Model

✔ CPU

– Can do the following 4 atomic operations

2.Arithmetic : Take the integers a,b stored in two registers,
calculate one of the following and store the result in a
register:

a+b, a−b, a*b, and a/b.

08/05/22 Created by Pukar Karki, IOE 10

The Random Access Machine (RAM) Model

✔ CPU

– Can do the following 4 atomic operations

3.Comparison/Branching : Take the integers a,b stored in
two registers, compare them,and learn which of the following
is true:

a<b ,a=b, a>b.

08/05/22 Created by Pukar Karki, IOE 11

The Random Access Machine (RAM) Model

✔ CPU

– Can do the following 4 atomic operations

4.Memory Access : Take a memory address A currently
stored in a register. Do one of the following:

– Read the contents of the memory cell with address
A into another register (overwriting the bits there).
– Write the contents of another register into the
memory cell with address A(overwriting the bits there).

08/05/22 Created by Pukar Karki, IOE 12

The Random Access Machine (RAM) Model

✔ Algorithms and Their Cost

– An algorithm is a sequence of atomic operations.

– Its cost(also called its running time, or simply,time) is the
length of the sequence, namely, the number of atomic
operations.

08/05/22 Created by Pukar Karki, IOE 13

Example

Problem

Suppose that an integer of n≥1 has already been stored at the
memory cell of address 1. We want to calculate 1 + 2 + … + n(the
sum can be stored anywhere, e.g., in a register).

08/05/22 Created by Pukar Karki, IOE 14

Example

Algorithm #1

1.load n into register a

2.register b←0, c←1, d←1.

3.repeat

4.b←b+c

5.c←c+d

6.until c>a

7.return b

Cost of the algorithm = 3n+ 4 = O(n)

08/05/22 Created by Pukar Karki, IOE 15

Example

Algorithm #2

1.register a←1, b←2, c←n.

2.Set a ← a+c (note:a now equals n+ 1).

3. Set a ← a c∗ (now a equals n(n+ 1)).

4. Set a ← a/b (now a equals n(n+ 1)/2).

5. Return a;

Cost of the algorithm = 6 = O(1)

08/05/22 Created by Pukar Karki, IOE 16

Time and Space Complexity

✔ Time complexity of an algorithm quantifies the amount of time taken
by an algorithm to run as a function of the length of the input.

✔ Similarly, Space complexity of an algorithm quantifies the amount of
space or memory taken by an algorithm to run as a function of the
length of the input.

08/05/22 Created by Pukar Karki, IOE 17

Time and Space Complexity

✔ Time and space complexity depends on lots of things like hardware,
operating system, processors, etc.

✔ However, we don't consider any of these factors while analyzing the
algorithm.

✔ We will make use of the RAM model to compute the number of atomic
operations(time complexity) and the number of memory cells it
uses(space complexity).

08/05/22 Created by Pukar Karki, IOE 18

Best, Worst and Average Case

✔ Best case complexity gives lower bound on the running time of
the algorithm for any instance of input(s).

✔ This indicates that the algorithm can never have lower running
time than best case for particular class of problems.

08/05/22 Created by Pukar Karki, IOE 19

Best, Worst and Average Case

✔ Worst case complexity gives upper bound on the running time
of the algorithm for all the instances of the input(s).

✔ This ensures that no input can overcome the running time limit
posed by worst case complexity.

08/05/22 Created by Pukar Karki, IOE 20

Best, Worst and Average Case

● Average case complexity gives average number of steps
required on any instance(s) of the input(s).

08/05/22 Created by Pukar Karki, IOE 21

Detailed Analysis of an Algorithm

Example 1 : algorithm to compute the factorial

fact(n)

{

f = 1;

for(i = 1; i<=n; i++)

{

f = f * i;

}

return f;

}

08/05/22 Created by Pukar Karki, IOE 22

Detailed Analysis of an Algorithm

Example 1 : algorithm to compute the factorial

fact(n)

{

f = 1;

for(i = 1; i<=n; i++)

{

f = f * i;

}

return f;

}

f = 1 takes 1 unit

Inside for loop
● i = 1 takes 1 unit
● i <= n takes n+1 unit
● i++ takes n unit
● f = f * i takes n unit

return f takes 1 unit

Time Complexity = 1 + 1 + (n+1) + n + n + 1 = 3n + 4 = O(n)

08/05/22 Created by Pukar Karki, IOE 23

Detailed Analysis of an Algorithm

Example 1 : algorithm to compute the factorial

fact(n)

{

f = 1;

for(i = 1; i<=n; i++)

{

f = f * i;

}

return f;

}

● f takes 1 unit of memory cell
● i takes 1 unit of memory cell
● n takes 1 unit of memory cell

Space Complexity = 1 + 1 + 1 = 3 = O(1)

08/05/22 Created by Pukar Karki, IOE 24

Detailed Analysis of an Algorithm

Example 2 : bubble sort

Input: an array of size n

Output: the input array of size n in sorted form

Algorithm:

08/05/22 Created by Pukar Karki, IOE 25

Detailed Analysis of an Algorithm

Example 2 : bubble sort

Space Complexity
● i takes 1 unit of memory cell
● j takes 1 unit of memory cell
● temp takes 1 unit of memory cell
● n takes 1 unit of memory cell
● Array takes n unit of memory cell
=1+1+1+1+n
=n+4
=O(n)

08/05/22 Created by Pukar Karki, IOE 26

Detailed Analysis of an Algorithm

Example 2 : bubble sort

Time Complexity
Within first for loop:

● i=1 takes 1 step
● i<n takes n steps
● i++ takes (n-1) steps

Inside second for loop:
● j=0 takes (n-1) step
● j<n-i takes [n+(n-1)+(n-2)+ _ _ _ _ + 2 +1]
● j++ takes [(n-1) + (n-2) + _ _ _ _ _ +2 + 1]

08/05/22 Created by Pukar Karki, IOE 27

Detailed Analysis of an Algorithm

Example 2 : bubble sort

Time Complexity
In if statement: It takes at most 3*(n-1)

= 1+n+(n-1)

+ [n+{n+(n-1)+(n-2)+ _ _ _ _ +3+2+1]+[(n-1)+
(n-2)+_ _ _ _ +3+2+1}]

+3*[(n-1)+(n-2)+_ _ _ _ +3+2+1]

= 2n+[n+n(n+1)/2+n(n-1)/2]+3*n(n-1)/2

= 2n+n+(n2)/2+n/2+(n2)/2-n/2+(3n2)/2-3n/2

= (5n2+3n)/2

= [O(1)*O(n2)+O(1)*O(n)]/O(1)

= [O(n2)+O(n)]/O(1)

= O(n2)+O(n)

= O(n2)

08/05/22 Created by Pukar Karki, IOE 28

Asymptotic Notations

✔ Complexity analysis of an algorithm is very hard if we try to
analyze exact.

✔ We know that the complexity (worst, best, or average) of an
algorithm is the mathematical function of the size of the input.

✔ So if we analyze the algorithm in terms of bound (upper and
lower) then it would be easier.

08/05/22 Created by Pukar Karki, IOE 29

Asymptotic Notations

✔ For this purpose we need the concept of asymptotic notations.
✔ The figure below gives upper and lower bound concept.

08/05/22 Created by Pukar Karki, IOE 30

Asymptotic Notations

✔ Asymptotic Notations are languages that allow us to
analyze an algorithm’s running time by identifying its
behavior as the input size for the algorithm increases.

✔ This is also known as an algorithm’s growth rate.

08/05/22 Created by Pukar Karki, IOE 31

Asymptotic Notations

✔ Does the algorithm suddenly become incredibly slow when the
input size grows?

✔ Does it mostly maintain its quick run time as the input size
increases?

✔ Asymptotic Notation gives us the ability to answer these
questions.

08/05/22 Created by Pukar Karki, IOE 32

Asymptotic Notations

✔ These are some basic function growth classifications used in
various notations.

✔ The list starts at the slowest growing function (logarithmic,
fastest execution time) and goes on to the fastest growing
(exponential, slowest execution time.)
1 < log(n) < SQRT(n) < n < n*log(n) < n2 < n3...2n<3n...<nn

08/05/22 Created by Pukar Karki, IOE 33

Big O Notation

✔ Big-O, commonly written as O, is an Asymptotic Notation for the
worst case, or ceiling of growth for a given function.

✔ It provides us with an asymptotic upper bound for the growth
rate of run-time of an algorithm.

08/05/22 Created by Pukar Karki, IOE 34

Big O Notation

✔ Say f(n) is your algorithm run-time, and g(n) is an arbitrary time
complexity you are trying to relate to your algorithm.

✔ f(n) is O(g(n)), if for some real constants c (c > 0) and
n0, f(n) ≤ c*g(n) for every input size n (n > n0).

✔ Big-O is the primary notation use for general algorithm time
complexity.

08/05/22 Created by Pukar Karki, IOE 35

Big O Notation

08/05/22 Created by Pukar Karki, IOE 36

Big O Notation

Example 1

f(n) = 3*n2

g(n) = n

Is f(n), O(g(n))?
✔ Let’s look at the definition of Big-O.
✔ 3 * n2 ≤ c * n
✔ Is there some pair of constants c, n0 that satisfies this for all n > 0?
✔ No, there isn’t.
✔ Thus,f(n) is NOT O(g(n)).

08/05/22 Created by Pukar Karki, IOE 37

Big O Notation

Example 2

08/05/22 Created by Pukar Karki, IOE 38

Big O Notation

Example 3

f(n) = 2n + 5

g(n) = n

Is f(n), O(g(n))?

✔ 2n + 5 ≤ 7*n i.e c = 7 and this will be true for all n>0.

✔ f(n) is O(g(n))

✔ Thus, f(n) is O(n).

08/05/22 Created by Pukar Karki, IOE 39

Big Ω Notations

✔ Big-Omega, commonly written as Ω, is an Asymptotic
Notation for the best case, or a floor growth rate for a
given function.

✔ It provides us with an asymptotic lower bound for the
growth rate of run-time of an algorithm.

✔ f(n) is Ω(g(n)), if for some real constants c (c > 0) and
n0 (n0 > 0), f(n) ≥ c *g(n) for every input size n (n > n0).

08/05/22 Created by Pukar Karki, IOE 40

Big Ω Notations

08/05/22 Created by Pukar Karki, IOE 41

Big Ω Notations

08/05/22 Created by Pukar Karki, IOE 42

Big Ө Notations

✔ Theta, commonly written as Θ, is an Asymptotic Notation to denote
the asymptotically tight bound on the growth rate of run-time of an
algorithm.

✔ f(n) is Θ(g(n)), if for some real constants c
1
, c

2
 and n0 (c1

 > 0, c
2
 > 0,

n0 > 0), c1* g(n) < f(n) < c2 *g(n) for every input size n (n > n0).

✔ f(n) is Θ(g(n)) implies f(n) is O(g(n)) as well as f(n) is Ω(g(n)).

08/05/22 Created by Pukar Karki, IOE 43

Big Ө Notations

08/05/22 Created by Pukar Karki, IOE 44

Big Ө Notations

Example

f(n) = 2n + 5

g(n) = n
✔ f(n) = O(n) because 2n + 5 ≤ 7n for all n>0
✔ f(n) = Ω(n) because 2n + 5 ≥ n for all n>0
✔ 1*n < f(n) < 7*n for all n > 0
✔ Thus, f(n) is Ө (n)

08/05/22 Created by Pukar Karki, IOE 45

Big Ө Notations

08/05/22 Created by Pukar Karki, IOE 46

Stack

08/05/22 Created by Pukar Karki, IOE 47

Stack

 A stack is a linear data structure where items can be
inserted and removed only at one end called top of stack
such that items which are inserted at the last are removed
first(LIFO).

08/05/22 Created by Pukar Karki, IOE 48

Stack

What can we do with a stack?
 push - place an item on the stack.
 pop - Look at the item on top of the stack and remove it.
 isFull – Check if the stack is full?
 isEmpty – Check if the stack is empty?

08/05/22 Created by Pukar Karki, IOE 49

Stack

isEmpty(S)
{
 if S.top == -1
 return TRUE
 else
 return FALSE
}

08/05/22 Created by Pukar Karki, IOE 50

Stack

isFull(S)
{
 if S.top == MAX-1
 return TRUE
 else
 return FALSE
}

08/05/22 Created by Pukar Karki, IOE 51

Stack

push(S, x)
{
 if isFull(S)
 Display “Overflow”
 else
 S.top = S.top + 1
 S[S.top] = x
}

08/05/22 Created by Pukar Karki, IOE 52

Stack

pop(S)
{
 if isEmpty(S)
 Display “Underflow”
 else
 S.top = S.top - 1
 return S[S.top + 1]
}

08/05/22 Created by Pukar Karki, IOE 53

Stack

✔ Each of the aforementioned stack operations take O(1) time.

08/05/22 Created by Pukar Karki, IOE 54

Queue

✔ A queue is a linear data structure which has two ends, FRONT
and REAR.

✔ Elements are inserted at REAR and removed from front.

08/05/22 Created by Pukar Karki, IOE 55

Queue

✔ The elements which is inserted first also gets removed first.

✔ This is also known as FIFO.

08/05/22 Created by Pukar Karki, IOE 56

Queue

✔ Placing an item in a queue is called “insertion or enqueue”,
which is done at the end of the queue called “rear”.

✔ Removing an item from a queue is called “deletion or dequeue”,
which is done at the other end of the queue called “front”.

08/05/22 Created by Pukar Karki, IOE 57

Queue

Enqueue(Q, x)

1)Start

2)Initialize Q.front=0 and Q.rear=-1

3)If Q.rear = MAX-1 then Display “Queue is Full”.

4)Else

Q.rear = Q.rear + 1

Q[Q.rear] = x

5)Stop

08/05/22 Created by Pukar Karki, IOE 58

Queue

Dequeue(Q)

1)Start

2)If Q.rear < Q.front then Display “Queue is Empty”.

3)Else

Q.front = Q.front + 1

return Q[Q.front - 1]

4)Stop

08/05/22 Created by Pukar Karki, IOE 59

Queue

✔ Each of the aforementioned queue operations take O(1) time.

08/05/22 Created by Pukar Karki, IOE 60

Linked Lists

✔ A linked list is a collection of data in which each element (node)
contains a minimum of two values, data and link(s) to its successor
(and/or predecessor).

08/05/22 Created by Pukar Karki, IOE 61

Linked Lists

✔ In a linked list, before adding any element to the list, a memory
space for that node must be allocated.

✔ A link is made from each item to the next item.

08/05/22 Created by Pukar Karki, IOE 62

Linked Lists

Each node of the linked list has at least the following two elements:

 1.The data member(s) being stored in the list.

 2. A pointer or link to the next element in the list.

The last node in the list contains a null pointer (or a suitable value like -1) to
indicate that it is the end.

08/05/22 Created by Pukar Karki, IOE 63

Linked Lists - Features

✔ Dynamic allocation that is, space allocation as per need can be done during
execution.

✔ As objects are not placed in consecutive locations at a fixed distance apart,
random access to elements is not possible.

✔ Insertion and deletion of objects do not require any data shifting.

08/05/22 Created by Pukar Karki, IOE 64

Linked Lists - Features

✔ It is space efficient for large objects with frequent insertions and deletions.

✔ Each element in general is a collection of data and a link. At least one link
field is a must.

✔ Every element keeps the address of its successor(or predecessor)element
in a link field.

✔ The only burden is that we need additional space for the link field for each
element. However, additional space is not a severe penalty when large
objects are to be stored.

08/05/22 Created by Pukar Karki, IOE 65

Variations of Linked Lists

✔ Singly Linked List

✔ Doubly Linked List

✔ Circular Linked List

✔ Circular Doubly Linked List

08/05/22 Created by Pukar Karki, IOE 66

Singly Linked List

✔ A SLL has two fields; data field and a link field.

✔ The link field is used to keep track of the successor.

08/05/22 Created by Pukar Karki, IOE 67

Singly Linked List

struct SLL
{
 int info;
 struct SLL *next;
};

08/05/22 Created by Pukar Karki, IOE 68

Singly Linked List – Operations

● Insertion
● Deletion
● Searching

08/05/22 Created by Pukar Karki, IOE 69

Singly Linked List – Insertion

Can be done in many ways

✔ at the beginning

✔ at the end

✔ at specified position

08/05/22 Created by Pukar Karki, IOE 70

Singly Linked List – Insertion at the Beginning

✔ Let first and last are the pointer to the first node and last
node in the current list respectively.

08/05/22 Created by Pukar Karki, IOE 71

Singly Linked List – Insertion at the Beginning

1. Start

2. Create a node using the malloc function as

 NewNode=(NodeType*)malloc(sizeof(NodeType));

3. Read data item to be inserted say element

4. Assign data to the info field of the new node

NewNode → info=element

NewNode → next = NULL;

08/05/22 Created by Pukar Karki, IOE 72

Singly Linked List – Insertion at the Beginning

5. If (first==null) then

Set, first=last=NewNode and exit.

6. Else,Set next of new node to first

NewNode→next=first;

7. Set the first pointer to the new node

first=NewNode;

8. Stop

08/05/22 Created by Pukar Karki, IOE 73

Singly Linked List – Insertion at the End

✔ Let first and last are the pointer to the first node and last
node in the current list respectively.

08/05/22 Created by Pukar Karki, IOE 74

Singly Linked List – Insertion at the End

1. Start

2. Create a node using the malloc function as

 NewNode=(NodeType*)malloc(sizeof(NodeType));

3. Read data item to be inserted say element

4. Assign data to the info field of the new node

NewNode → info=element

NewNode → next = NULL;

08/05/22 Created by Pukar Karki, IOE 75

Singly Linked List – Insertion at the End

5. If (first==null) then

Set, first=last=NewNode and exit.

6. Else,Set next of last to NewNode

last→next=NewNode;

7. Set the last pointer to the new node

last=NewNode;

8. Stop

08/05/22 Created by Pukar Karki, IOE 76

Singly Linked List – Insertion at the Specified Position

✔ Let first and last are the pointer to the first node and last
node in the current list respectively.

08/05/22 Created by Pukar Karki, IOE 77

Singly Linked List – Insertion at the Specified Position

1. Start

2. Create a node using the malloc function as

 NewNode=(NodeType*)malloc(sizeof(NodeType));

3. Read data item to be inserted say element

4. Assign data to the info field of the new node

NewNode → info=element

NewNode → next = NULL;

08/05/22 Created by Pukar Karki, IOE 78

Singly Linked List – Insertion at the Specified Position

5. Enter position of a node at which you want to insert a new node
say pos.

6. Set, temp=first;

7. If (first==null) then

Print “void insertion” and exit.

8. for(i=1;i<pos-1;i++)

temp=temp → next;

9. Set, NewNode → next=temp → next

10. Set temp → next = NewNode

11. Stop

08/05/22 Created by Pukar Karki, IOE 79

Singly Linked List – Deletion

Can be done in many ways

✔ from the beginning

✔ from the end

✔ from the specified position

08/05/22 Created by Pukar Karki, IOE 80

Singly Linked List – Deletion from the Beginning

✔ Let first and last are the pointer to the first node and last
node in the current list respectively.

08/05/22 Created by Pukar Karki, IOE 81

Singly Linked List – Deletion from the Beginning

1.Start

2.If (first==null) then

Print “void deletion” and exit;
3.Else if(first == last)

Print deleted item as first→ info;
first=last=null;

4.Else, Store the address of first node in temp

temp=first;
5.Set first to next of first

first=first → next
6. Free the memory of temp

 free(temp);

7.Stop

08/05/22 Created by Pukar Karki, IOE 82

Singly Linked List – Deletion from the End

✔ Let first and last are the pointer to the first node and last
node in the current list respectively.

08/05/22 Created by Pukar Karki, IOE 83

Singly Linked List – Deletion from the End

1.Start

2.If (first==null) then

Print “void deletion” and exit;

3.Else if(first == last)

Print deleted item as first→ info;

first=last=null;

4. Else,

temp=first;

while(temp→next !=last)

temp=temp → next

temp → next=null;

last=temp;

5. free(temp)

6.Stop

08/05/22 Created by Pukar Karki, IOE 84

Singly Linked List – Deletion from the Specific Position

✔ Let first and last are the pointer to the first node and last
node in the current list respectively.

08/05/22 Created by Pukar Karki, IOE 85

Singly Linked List – Deletion from the Specific Position

1.Start

2.If (first==null) then

Print “void deletion” and exit;

3.Else if(first == last)

Print deleted item as first→ info;

first=last=null;

4. Else

 temp=first

 for(i=1;i<pos-1;i++)

 temp=temp → next

5. loc = temp → next

6. Print deleted item is loc → info

7. Set temp→next=loc → next

8. free(loc)

9. Stop

08/05/22 Created by Pukar Karki, IOE 86

Singly Linked List – Searching

✔ Let first and last are the pointer to the first node and last node in the
current list respectively.

✔ key is the value we are searching for in our linked list.

08/05/22 Created by Pukar Karki, IOE 87

Singly Linked List – Searching

1. Start

2. Initialize flag = 0

3. If (first == null) then Display “List is Empty” and exit.

4. Else

temp = first

while(temp → next != null)

if(temp → info == key)

Display “Search Successful” and Set flag=1;

temp=temp → next;

5. if(flag==0) then Display “Search Unsuccessful”

6. Stop

08/05/22 Created by Pukar Karki, IOE 88

Self Study

✔ Analyze the insertions, deletions and searching operations
in a SLL.

08/05/22 Created by Pukar Karki, IOE 89

Binary Search Trees

✔ A binary search tree (BST), sometimes also called an ordered or sorted
binary tree, is a binary tree data structure which has the following properties

- The left subtree of a node contains only nodes with keys less than or
equal to the node's key.

- The right subtree of a node contains only nodes with keys greater than
or equal to the node's key.

- The left and right subtree must each also be a binary search tree.

08/05/22 Created by Pukar Karki, IOE 90

Binary Search Trees

08/05/22 Created by Pukar Karki, IOE 91

Binary Search Trees

✔ The keys in a binary search tree are always stored in such a way as to
satisfy the binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left subtree
of x, then y.key ≤ x.key. If y is a node in the right subtree of x, then
y.key ≥ x.key.

08/05/22 Created by Pukar Karki, IOE 92

Binary Search Trees

✔ The binary-search-tree property allows us to print out all the keys in a
binary search tree in sorted order by a simple recursive algorithm,
called an inorder tree walk.

✔ This algorithm is so named because it prints the key of the root of a
subtree between printing the values in its left subtree and printing
those in its right subtree.

08/05/22 Created by Pukar Karki, IOE 93

Binary Search Trees

INORDER-TREE-WALK(x)

{

 if x ≠ NIL

 {

 INORDER-TREE-WALK(x.left)

Print x.key

INORDER-TREE-WALK(x.right)

}

}

08/05/22 Created by Pukar Karki, IOE 94

Binary Search Trees

INORDER-TREE-WALK(x)
2, 5, 5, 6, 7, 8

INORDER-TREE-WALK(x)
2, 5, 5, 6, 7, 8

08/05/22 Created by Pukar Karki, IOE 95

Binary Search Trees

✔ Similarly, a preorder tree walk prints the root before the values in
either subtree, and a postorder tree walk prints the root after the
values in its subtrees.

08/05/22 Created by Pukar Karki, IOE 96

Binary Search Trees - Searching

✔ Given a pointer to the root of the tree and a key k, TREE-SEARCH
returns a pointer to a node with key k if one exists; otherwise, it
returns NIL.

08/05/22 Created by Pukar Karki, IOE 97

Binary Search Trees - Searching

To search for the key 13 in the tree, we follow the path 15 → 6 → 7 → 13 from the root.

08/05/22 Created by Pukar Karki, IOE 98

Binary Search Trees - Searching

TREE-SEARCH(x, k)
{
 if x == NIL or k == x:key
 return x
 if k < x:key
 return TREE-SEARCH(x.left, k)
 else
 return TREE-SEARCH(x.right,k)
}

The nodes encountered during the recursion form a simple path
downward from the root of the tree, and thus the running time of TREE-
SEARCH is O(h), where h is the height of the tree.

08/05/22 Created by Pukar Karki, IOE 99

Binary Search Trees - Searching

ITERATIVE-TREE-SEARCH(x, k)
{
 while x ≠ NIL and k ≠ x.key
 {
 if k < x.key
 x = x.left
 else
 x = x.right
 }
 return x
}
The nodes encountered during this iterative version form a simple path
downward from the root of the tree, and thus the running time of TREE-
SEARCH is O(h), where h is the height of the tree.

08/05/22 Created by Pukar Karki, IOE 100

Binary Search Trees - Minimum

✔ We can always find an element in a binary search tree whose key is a
minimum by following left child pointers from the root until we
encounter a NIL.

08/05/22 Created by Pukar Karki, IOE 101

Binary Search Trees - Minimum

The minimum key in the tree is 2, which is found by
following left pointers from the root.

08/05/22 Created by Pukar Karki, IOE 102

Binary Search Trees - Minimum

TREE-MINIMUM(x)

{

 while x.left ≠ NIL

 x = x.left

 return x

}

This procedure runs in O(h) time on a tree of height h since, as in
TREE-SEARCH, the sequence of nodes encountered forms a simple
path downward from the root.

08/05/22 Created by Pukar Karki, IOE 103

Binary Search Trees - Maximum

✔ Similarly, we can always find an element in a binary search tree
whose key is a maximum by following right child pointers from the
root until we encounter a NIL.

08/05/22 Created by Pukar Karki, IOE 104

Binary Search Trees - Maximum

The maximum key 20 is found by following right
pointers from the root.

08/05/22 Created by Pukar Karki, IOE 105

Binary Search Trees - Maximum

TREE-MAXIMUM(x)

{

 while x.right ≠ NIL

 x = x.right

 return x

}

This procedure runs in O(h) time on a tree of height h since, as in
TREE-SEARCH, the sequence of nodes encountered forms a simple
path downward from the root.

08/05/22 Created by Pukar Karki, IOE 106

Binary Search Trees - Insertion

✔ To insert a new value Z into a binary search tree T , we use the
procedure TREE- INSERT.

✔ The procedure takes a node Z for which Z.key = v and Z.left = NIL,
and Z.right = NIL.

✔ It modifies T and some of the attributes of Z in such a way that it
inserts Z into an appropriate position in the tree.

08/05/22 Created by Pukar Karki, IOE 107

Binary Search Trees - Insertion

TREE-INSERT(T, Z)

{

y = NIL

x = T.root

while x ≠ NIL

{

 y = x

 if Z.key < x:key

 x = x.left

 else

 x = x.right

}´

Z.p = y

if y == NIL
 T.root = Z // tree T was empty

else if Z.key < y.key
 y.left = Z

else
 y.right = Z

Like the other primitive operations
on search trees, the procedure
TREE-INSERT runs in O(h)time on a
tree of height h.

08/05/22 Created by Pukar Karki, IOE 108

Binary Search Trees - Insertion

08/05/22 Created by Pukar Karki, IOE 109

Binary Search Trees - Deletion

The overall strategy for deleting a node Z from a binary search tree T has
three basic cases

1. If Z has no children, then we simply remove it by modifying its parent
to replace Z with NIL as its child.

2. If Z has just one child, then we elevate that child to take Z’s position
in the tree by modifying Z’s parent to replace Z by Z’s child.

3. If Z has two children, then we find Z’s successor y—which must be in
Z’s right subtree—and have y take Z’s position in the tree. The rest of
Z’s original right subtree becomes y’s new right subtree, and Z’s left
subtree becomes y’s new left subtree. This case is the tricky one
because, as we shall see, it matters whether y is Z’s right child.

08/05/22 Created by Pukar Karki, IOE 110

Binary Search Trees - Deletion

✔ The procedure for deleting a given node Z from a binary search tree T
takes as arguments pointers to T and Z. It organizes its cases a bit
differently from the three cases outlined previously by considering the
four cases.

08/05/22 Created by Pukar Karki, IOE 111

Binary Search Trees - Deletion

1. If Z has no left child , then we replace Z by its right child, which may
or may not be NIL. When Z’s right child is NIL, this case deals with
the situation in which Z has no children. When Z’s right child is non-
NIL, this case handles the situation in which Z has just one child,
which is its right child.

08/05/22 Created by Pukar Karki, IOE 112

Binary Search Trees - Deletion

2. If Z has just one child, which is its left child, then we replace Z by its
left child.

08/05/22 Created by Pukar Karki, IOE 113

Binary Search Trees - Deletion

3. Otherwise, Z has both a left and a right child. We find Z’s successor y,
which lies in Z’s right subtree and has no left child. If y is Z’s right
child , then we replace Z by y, leaving y’s right child alone.

08/05/22 Created by Pukar Karki, IOE 114

Binary Search Trees - Deletion

4. Otherwise, Z has both a left and a right child. We find Z’s successor y,
which lies in Z’s right subtree and has no left child. Otherwise, y lies
within Z’s right subtree but is not Z’s right child. In this case, we
first replace y by its own right child, and then we replace Z by y.

08/05/22 Created by Pukar Karki, IOE 115

Self Study

✔ Write an algorithm to delete a node in BST and analyze it.

08/05/22 Created by Pukar Karki, IOE 116

Graphs

✔ Definition: A simple graph G = (V, E) consists of V, a nonempty set of
vertices, and E, a set of unordered pairs of distinct elements of V
called edges.

✔ For each e E, e = {u, v} where u, v V.∈ ∈
✔ An undirected graph (not simple) may contain loops. An edge e is a

loop if e = {u, u} for some u V.∈

08/05/22 Created by Pukar Karki, IOE 117

Graphs - Types

08/05/22 Created by Pukar Karki, IOE 118

Graphs Representation

✔ We can choose between two standard ways to represent a graph G =(V, E)
as a collection of adjacency lists or as an adjacency matrix.

✔ Either way applies to both directed and undirected graphs.

✔ Because the adjacency-list representation provides a compact way to
represent sparse graphs—those for which it is usually the method of choice.

✔ We may prefer an adjacency-matrix representation, however, when the
graph is dense.

08/05/22 Created by Pukar Karki, IOE 119

Graphs Representation

✔ Definition: Let G = (V, E) be a simple graph with |V| = n.
Suppose that the vertices of G are listed in arbitrary order as v1,
v2, …, vn.

✔ The adjacency matrix A (or AG) of G, with respect to this listing
of the vertices, is the n x n matrix with

aij = 1 if {vi, vj} is an edge of G,

aij = 0 if there is no edge and

aij = k if there are k(≥2) edges between the vertices.

•Example: What is the adjacency matrix
AG for the following graph G based on the
order of vertices a, b, c, d ?

Solution:

0111

1001

1001

1110

GA

Note: Adjacency matrices of undirected graphs are always symmetric.

a

b

c

d

Graphs Representation

•Example: What is the adjacency matrix
AG for the following graph G based on the
order of vertices 1, 2, 3, 4, 5 ?

Solution:

Note: Adjacency matrices of undirected graphs are always symmetric.

Graphs Representation

•Example: What is the adjacency matrix
AG for the following graph G based on the
order of vertices 1, 2, 3, 4, 5, 6 ?

Solution:

Note: Adjacency matrices of undirected graphs are always symmetric.

Graphs Representation

✔ The adjacency matrix of a graph requires Θ(V2) memory,
independent of the number of edges in the graph.

✔ Adjacency matrices are simpler, and so we may prefer them
when graphs are reasonably small.

Graphs Representation

08/05/22 Created by Pukar Karki, IOE 124

Graphs Representation

✔ The adjacency-list representation of a graph G = (V, E) consists of an array
Adj of |V| lists, one for each vertex in V.

✔ For each u ∈V , the adjacency list Adj[u] contains all the vertices v such that
there is an edge (u, v) ∈E.

✔ That is, Adj[u] consists of all the vertices adjacent to u in G.

•Example: What is the adjacency list for
the following graph G?

Solution:

Graphs Representation

Example: What is the adjacency list for the
following graph G?

Solution:

Graphs Representation

Breadth-First Search

✔ Given a graph G = (V, E) and a distinguished source vertex s,
breadth-first search systematically explores the edges of G to
“discover” every vertex that is reachable from s.

✔ It computes the distance (smallest number of edges) from s to each
reachable vertex. It also produces a “breadth-first tree” with root s that
contains all reachable vertices.

Breadth-First Search

✔ For any vertex v reachable from s, the simple path in the breadth-first tree
from s to v corresponds to a “shortest path” from s to v in G, that is, a path
containing the smallest number of edges.

✔ The algorithm works on both directed and undirected graphs.

✔ Breadth-first search is named so because it expands the frontier between
discovered and undiscovered vertices uniformly across the breadth of the
frontier.

✔ That is, the algorithm discovers all vertices at distance k from s before
discovering any vertices at distance k +1.

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search - Analysis

✔ After initialization, breadth-first
search never whitens a
vertex, and thus the test in
line 13 ensures that each
vertex is enqueued at most
once, and hence dequeued at
most once.

✔ The operations of enqueuing
and dequeuing take O(1) time,
and so the total time devoted
to queue operations is O(V).

Breadth-First Search - Analysis

✔ Because the procedure scans
the adjacency list of each
vertex only when the vertex is
dequeued, it scans each
adjacency list at most once.

✔ Since the sum of the lengths
of all the adjacency lists is
Θ(E), the total time spent in
scanning adjacency lists is
O(E).

Breadth-First Search - Analysis

✔ The overhead for
initialization is O(V), and
thus the total running time
of the BFS procedure is
O(V+E).

✔ Thus, breadth-first search
runs in time linear in the
size of the adjacency-list
representation of G.

Depth-First Search

Self Study

08/05/22 Created by Pukar Karki, IOE 143

Review Questions

1) Define big oh, big omega and big theta notations with suitable examples.

2) Find big oh and big omega of the following function

f(x) = 5n3 + 6n2 + 9n + 3

3) Explain why the statement, “The running time of algorithm A is at least O(n2),” is
meaningless.

4) Illustrate the result of each operation in the sequence PUSH(S,4),PUSH(S, 1), PUSH(S,3),
POP(S),PUSH(S,8), and POP(S) on an initially empty stack S stored in array S[0..5].

5) Explain and analyze the different operations in a stack.

6) Explain and analyze the different operations in a queue.

7) Implement a stack using a singly linked list L. The operations PUSH and POP
should still take O(1) time.

8) Implement a queue by a singly linked list L. The operations ENQUEUE and
DEQUEUE should still take O(1) time.

08/05/22 Created by Pukar Karki, IOE 144

Review Questions

9) Give recursive algorithms that perform preorder and postorder tree walks in Θ(n) time on a
tree of n nodes.

10) Explain and analyze the different operations in a BST.

11)Show how depth-first search works on the graph of figure.

12) Explain and analyze breadth-first search in detail.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144

