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Algorithm

● An algorithm is any well-defined computational procedure that 
takes some value, or set of values, as input and produces some 
value, or set of values, as output.

● An algorithm is thus a sequence of computational steps that 
transform the input into the output.
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What kind of problems are solved by algorithms?
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Properties of an Algorithm

1.Input specified

2.Output specified

3.Definiteness

4.Effectiveness

5.Finiteness

6.Independent
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Expressing Algorithms

An algorithm may be expressed in a number of ways:
✔ natural language

– usually verbose and ambiguous;
✔ flow charts

– avoids most (if not all) issues of ambiguity;

– difficult to modify w/o specialized tools;

– largely standardized
✔ pseudo-code

– also avoids most issues of ambiguity;

– vaguely resembles common elements of programming languages;

– no particular agreement on syntax
✔ programming language

– tend to require expressing low-level details that are not necessary for a high-level 
understanding
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The Random Access Machine (RAM) Model

✔ A machine has a CPU and a memory.
✔ Memory :

– An infinite sequence of cells, each of which contains 
the same number w of bits.

– Every cell has an address:  the first cell of memory 
has address 1,the second cell 2, and so on.
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The Random Access Machine (RAM) Model

✔ CPU

– Contains a fixed numbers of registers,each of 
which has w bits (i.e., same as a memory cell).
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The Random Access Machine (RAM) Model

✔ CPU

– Can do the following 4 atomic operations

1.Register (Re-)Initialization : Set a register to a fixed 
value (e.g., 0,−1, 100, etc.), or to the contents of another 
register.
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The Random Access Machine (RAM) Model

✔ CPU

– Can do the following 4 atomic operations

2.Arithmetic : Take the integers a,b stored in two registers, 
calculate one of the following and store the result in a 
register:

a+b, a−b, a*b, and a/b.
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The Random Access Machine (RAM) Model

✔ CPU

– Can do the following 4 atomic operations

3.Comparison/Branching : Take the integers a,b stored in 
two registers, compare them,and learn which of the following 
is true:

a<b ,a=b, a>b.
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The Random Access Machine (RAM) Model

✔ CPU

– Can do the following 4 atomic operations

4.Memory Access : Take a memory address A currently 
stored in a register. Do one of the following:

– Read the contents of the memory cell with address 
A into another register (overwriting the bits there).
– Write the contents of another register into the 
memory cell with address A(overwriting the bits there).
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The Random Access Machine (RAM) Model

✔ Algorithms and Their Cost

– An algorithm is a sequence of atomic operations.

– Its cost(also called its running time, or simply,time) is the 
length of the sequence, namely, the number of atomic 
operations.
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Example

Problem

Suppose that an integer of n≥1 has already been stored at the 
memory cell of address 1. We want to calculate 1 + 2 + … + n(the 
sum can be stored anywhere, e.g., in a register).



08/05/22 Created by Pukar Karki, IOE 14

Example

Algorithm #1

1.load n into register a  

2.register b←0, c←1, d←1. 

3.repeat

4.b←b+c 

5.c←c+d 

6.until c>a 

7.return b

Cost of the algorithm = 3n+ 4 = O(n)
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Example

Algorithm #2

1.register a←1, b←2, c←n.

2.Set a ←  a+c (note:a now equals n+ 1).

3. Set a ←  a c∗ (now a  equals n(n+ 1)).

4. Set a ←  a/b (now a equals n(n+ 1)/2).

5. Return a;

Cost of the algorithm = 6 = O(1)
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Time and Space Complexity

✔ Time complexity of an algorithm quantifies the amount of time taken 
by an algorithm to run as a function of the length of the input.

✔ Similarly, Space complexity of an algorithm quantifies the amount of 
space or memory taken by an algorithm to run as a function of the 
length of the input.
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Time and Space Complexity

✔ Time and space complexity depends on lots of things like hardware, 
operating system, processors, etc.

✔ However, we don't consider any of these factors while analyzing the 
algorithm.

✔ We will make use of the RAM model to compute the number of atomic 
operations(time complexity) and the number of memory cells it 
uses(space complexity).
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Best, Worst and Average Case

✔ Best case complexity gives lower bound on the running time of 
the algorithm for any instance of input(s).

✔ This indicates that the algorithm can never have lower running 
time than best case for particular class of problems.
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Best, Worst and Average Case

✔ Worst case complexity gives upper bound on the running time 
of the algorithm for all the instances of the input(s).

✔ This ensures that no input can overcome the running time limit 
posed by worst case complexity.
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Best, Worst and Average Case

● Average case complexity gives average number of steps 
required on any instance(s) of the input(s).
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Detailed Analysis of an Algorithm

Example 1 : algorithm to compute the factorial

fact(n)

{

f = 1;

for(i = 1; i<=n; i++)

{

f = f * i;

}

return f;

} 
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Detailed Analysis of an Algorithm

Example 1 : algorithm to compute the factorial

fact(n)

{

f = 1;

for(i = 1; i<=n; i++)

{

f = f * i;

}

return f;

} 

f = 1 takes 1 unit

Inside for loop
● i = 1 takes 1 unit
● i <= n takes n+1 unit
● i++ takes n unit
● f = f * i takes n unit 

return f takes 1 unit

Time Complexity = 1 + 1 + (n+1) + n + n + 1 = 3n + 4 = O(n)
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Detailed Analysis of an Algorithm

Example 1 : algorithm to compute the factorial

fact(n)

{

f = 1;

for(i = 1; i<=n; i++)

{

f = f * i;

}

return f;

} 

● f takes 1 unit of memory cell
● i takes 1 unit of memory cell
● n takes 1 unit of memory cell

Space Complexity = 1 + 1 +  1 = 3 = O(1)
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Detailed Analysis of an Algorithm

Example 2 : bubble sort 

Input: an array of size n

Output: the input array of size n in sorted form

Algorithm:
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Detailed Analysis of an Algorithm

Example 2 : bubble sort 

 

Space Complexity
● i takes 1 unit of memory cell
● j takes 1 unit of memory cell
● temp takes 1 unit of memory cell
● n takes 1 unit of memory cell
● Array takes n unit of memory cell
=1+1+1+1+n
=n+4
=O(n)
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Detailed Analysis of an Algorithm

Example 2 : bubble sort 

 

Time Complexity
Within first for loop:

● i=1 takes 1 step
● i<n takes n steps
● i++ takes (n-1) steps

Inside second for loop:
● j=0 takes (n-1) step
● j<n-i takes [n+(n-1)+(n-2)+ _ _ _ _ + 2 +1]
● j++ takes [(n-1) + (n-2) + _ _ _ _ _ +2 + 1]
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Detailed Analysis of an Algorithm

Example 2 : bubble sort 

 

Time Complexity
In if statement: It takes at most 3*(n-1)

= 1+n+(n-1)

+ [n+{n+(n-1)+(n-2)+ _ _ _ _ +3+2+1]+[(n-1)+
(n-2)+_ _ _ _ +3+2+1}]

+3*[(n-1)+(n-2)+_ _ _ _ +3+2+1]

= 2n+[n+n(n+1)/2+n(n-1)/2]+3*n(n-1)/2

= 2n+n+(n2)/2+n/2+(n2)/2-n/2+(3n2)/2-3n/2

= (5n2+3n)/2

= [O(1)*O(n2)+O(1)*O(n)]/O(1)

= [O(n2)+O(n)]/O(1)

= O(n2)+O(n)

= O(n2)
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Asymptotic Notations

✔ Complexity analysis of an algorithm is very hard if we try to 
analyze exact. 

✔ We know that the complexity (worst, best, or average) of an 
algorithm is the mathematical function of the size of the input.

✔ So if we analyze the algorithm in terms of bound (upper and 
lower) then it would be easier.
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Asymptotic Notations

✔ For this purpose we need the concept of asymptotic notations.
✔ The figure below gives upper and lower bound concept. 
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Asymptotic Notations

✔ Asymptotic Notations are languages that allow us to 
analyze an algorithm’s running time by identifying its 
behavior as the input size for the algorithm increases. 

✔ This is also known as an algorithm’s growth rate. 



08/05/22 Created by Pukar Karki, IOE 31

Asymptotic Notations

✔ Does the algorithm suddenly become incredibly slow when the 
input size grows?

✔ Does it mostly maintain its quick run time as the input size 
increases?

✔ Asymptotic Notation gives us the ability to answer these 
questions.
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Asymptotic Notations

✔ These are some basic function growth classifications used in 
various notations. 

✔ The list starts at the slowest growing function (logarithmic, 
fastest execution time) and goes on to the fastest growing 
(exponential, slowest execution time.)
1 < log(n) < SQRT(n) < n < n*log(n) < n2 < n3...2n<3n...<nn
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Big O Notation

✔ Big-O, commonly written as O, is an Asymptotic Notation for the 
worst case, or ceiling of growth for a given function. 

✔ It provides us with an asymptotic upper bound for the growth 
rate of run-time of an algorithm.
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Big O Notation

✔ Say f(n) is your algorithm run-time, and g(n) is an arbitrary time 
complexity you are trying to relate to your algorithm.

✔ f(n) is O(g(n)), if for some real constants c (c > 0) and 
n0, f(n) ≤ c*g(n) for every input size n (n > n0).

✔ Big-O is the primary notation use for general algorithm time 
complexity.
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Big O Notation
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Big O Notation

Example 1

f(n) = 3*n2 

g(n) = n

Is f(n), O(g(n))?
✔ Let’s look at the definition of Big-O.
✔ 3 * n2 ≤ c * n
✔ Is there some pair of constants c, n0 that satisfies this for all n > 0? 
✔ No, there isn’t. 
✔ Thus,f(n) is NOT O(g(n)).
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Big O Notation

Example 2
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Big O Notation

Example 3

f(n) = 2n + 5

g(n) = n

Is f(n), O(g(n))?

✔ 2n + 5 ≤ 7*n i.e c = 7 and this will be true for all n>0.

✔ f(n) is O(g(n))

✔ Thus, f(n) is O(n).
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Big Ω Notations

✔ Big-Omega, commonly written as Ω, is an Asymptotic 
Notation for the best case, or a floor growth rate for a 
given function.

✔ It provides us with an asymptotic lower bound for the 
growth rate of run-time of an algorithm.

✔ f(n) is Ω(g(n)), if for some real constants c (c > 0) and 
n0 (n0 > 0), f(n) ≥ c *g(n) for every input size n (n > n0).
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Big Ω Notations
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Big Ω Notations
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Big Ө Notations

✔ Theta, commonly written as Θ, is an Asymptotic Notation to denote 
the asymptotically tight bound on the growth rate of run-time of an 
algorithm.

✔ f(n) is Θ(g(n)), if for some real constants c
1
, c

2
 and n0 (c1

 > 0, c
2
 > 0, 

n0 > 0), c1* g(n) < f(n) < c2 *g(n) for every input size n (n > n0).

✔ f(n) is Θ(g(n)) implies f(n) is O(g(n)) as well as f(n) is Ω(g(n)).
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Big Ө Notations
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Big Ө Notations

Example

f(n) = 2n + 5

g(n) = n
✔ f(n) = O(n) because 2n + 5 ≤ 7n for all n>0
✔ f(n) =  Ω(n) because 2n + 5 ≥ n for all n>0
✔ 1*n < f(n) < 7*n for all n > 0
✔ Thus, f(n) is Ө (n)
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Big Ө Notations
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Stack
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Stack

 A stack is a linear data structure where  items can be 
inserted and removed only at one end called top of stack 
such that items which are inserted at the last are removed 
first(LIFO).
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Stack

What can we do with a stack?
 push - place an item on the stack.
 pop - Look at the item on top of the stack and remove it.
 isFull – Check if the stack is full?
 isEmpty – Check if the stack is empty?
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Stack

isEmpty(S)
{
 if S.top == -1
 return TRUE
 else 
 return FALSE
}
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Stack

isFull(S)
{
 if S.top == MAX-1
 return TRUE
 else 
 return FALSE
}
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Stack

push(S, x)
{
 if isFull(S)
 Display “Overflow”
 else
 S.top = S.top + 1
 S[S.top] = x
}
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Stack

pop(S)
{
 if isEmpty(S)
 Display “Underflow”
 else
 S.top = S.top - 1
 return S[S.top + 1]
}
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Stack

✔ Each of the aforementioned stack operations take O(1) time.
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Queue

✔ A queue is a linear data structure which has two ends, FRONT 
and REAR.

✔ Elements are inserted at REAR and removed from front.
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Queue

✔ The elements which is inserted first also gets removed first.

✔ This is also known as FIFO.
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Queue

✔ Placing an item in a queue is called “insertion or enqueue”, 
which is done at the end of the queue called “rear”.

✔ Removing an item from a queue is called “deletion or dequeue”, 
which is done at the other end of the queue called “front”.



08/05/22 Created by Pukar Karki, IOE 57

Queue

Enqueue(Q, x)

1)Start

2)Initialize Q.front=0 and Q.rear=-1

3)If Q.rear = MAX-1 then Display “Queue is Full”.

4)Else

Q.rear = Q.rear + 1

Q[Q.rear] = x

5)Stop
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Queue

Dequeue(Q)

1)Start

2)If Q.rear < Q.front then Display “Queue is Empty”.

3)Else

Q.front = Q.front + 1

return Q[Q.front - 1]

4)Stop
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Queue

✔ Each of the aforementioned queue operations take O(1) time.
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Linked Lists

✔ A linked list is a collection of data in which each element (node) 
contains a minimum of two values, data and link(s) to its successor 
(and/or predecessor).  
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Linked Lists

✔ In a linked list, before adding any element to the list, a memory 
space for that node must be allocated. 

✔ A link is made from each item to the next item. 
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Linked Lists

Each node of the linked list has at least the following two elements:

 1.The data member(s) being stored in the list. 

 2. A pointer or link to the next element in the list.

The last node in the list contains a null pointer (or a suitable value like -1) to 
indicate that it is the end.
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Linked Lists - Features

✔ Dynamic allocation that is, space allocation as per need can be done during 
execution.

✔ As objects are not placed in consecutive locations at a fixed distance apart, 
random access to elements is not possible.

✔ Insertion and deletion of objects do not require any data shifting.



08/05/22 Created by Pukar Karki, IOE 64

Linked Lists - Features

✔ It is space efficient for large objects with frequent insertions and deletions.

✔ Each element in general is a collection of data and a link. At least one link 
field is a must.

✔ Every element keeps the address of its successor( or predecessor)element 
in a link field. 

✔ The only burden is that we need additional space for the link field for each 
element. However, additional space is not a severe penalty when large 
objects are to be stored.
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Variations of Linked Lists

✔ Singly Linked List

✔ Doubly Linked List

✔ Circular Linked List

✔ Circular Doubly Linked List



08/05/22 Created by Pukar Karki, IOE 66

Singly Linked List

✔ A SLL has two fields; data field and a link field.

✔ The link field is used to keep track of the successor.
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Singly Linked List

struct SLL
{
 int info;
 struct SLL *next;
};
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Singly Linked List – Operations

● Insertion
● Deletion
● Searching
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Singly Linked List – Insertion

Can be done in many ways

✔ at the beginning

✔ at the end

✔ at specified position
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Singly Linked List – Insertion at the Beginning

✔ Let first and last are the pointer to the first node and last 
node in the current list respectively.
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Singly Linked List – Insertion at the Beginning

1. Start

2. Create a node using the malloc function as

 NewNode=(NodeType*)malloc(sizeof(NodeType));

3. Read data item to be inserted say element

4. Assign data to the info field of the new node

NewNode → info=element

NewNode → next = NULL;
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Singly Linked List – Insertion at the Beginning

5. If (first==null) then

Set, first=last=NewNode and exit.

6. Else,Set next of new node to first

NewNode→next=first;

7. Set the first pointer to the new node

first=NewNode;

8. Stop
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Singly Linked List – Insertion at the End

✔ Let first and last are the pointer to the first node and last 
node in the current list respectively.
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Singly Linked List – Insertion at the End

1. Start

2. Create a node using the malloc function as

 NewNode=(NodeType*)malloc(sizeof(NodeType));

3. Read data item to be inserted say element

4. Assign data to the info field of the new node

NewNode → info=element

NewNode → next = NULL;
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Singly Linked List – Insertion at the End

5. If (first==null) then

Set, first=last=NewNode and exit.

6. Else,Set next of last to NewNode

last→next=NewNode;

7. Set the last pointer to the new node

last=NewNode;

8. Stop
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Singly Linked List – Insertion at the Specified Position

✔ Let first and last are the pointer to the first node and last 
node in the current list respectively.
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Singly Linked List – Insertion at the Specified Position

1. Start

2. Create a node using the malloc function as

 NewNode=(NodeType*)malloc(sizeof(NodeType));

3. Read data item to be inserted say element

4. Assign data to the info field of the new node

NewNode → info=element

NewNode → next = NULL;
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Singly Linked List – Insertion at the Specified Position

5. Enter position of a node at which you want to insert a new node 
say pos.

6. Set, temp=first;

7. If (first==null) then

Print “void insertion” and exit.

8. for(i=1;i<pos-1;i++)

temp=temp → next;

9. Set, NewNode → next=temp → next

10. Set temp → next = NewNode

11. Stop
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Singly Linked List – Deletion

Can be done in many ways

✔ from the beginning

✔ from the end

✔ from the specified position
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Singly Linked List – Deletion from the Beginning

✔ Let first and last are the pointer to the first node and last 
node in the current list respectively.
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Singly Linked List – Deletion from the Beginning

1.Start

2.If (first==null) then

Print “void deletion” and exit;
3.Else if(first == last)

Print deleted item as first→ info;
first=last=null;

4.Else, Store the address of first node in temp

temp=first;
5.Set first to next of first

first=first → next
6. Free the memory of temp

       free(temp);

7.Stop
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Singly Linked List – Deletion from the End

✔ Let first and last are the pointer to the first node and last 
node in the current list respectively.
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Singly Linked List – Deletion from the End

1.Start

2.If (first==null) then

Print “void deletion” and exit;

3.Else if(first == last)

Print deleted item as first→ info;

first=last=null;

4. Else, 

temp=first;

while(temp→next !=last)

temp=temp → next

temp → next=null;

last=temp;

5. free(temp)

6.Stop
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Singly Linked List – Deletion from the Specific Position

✔ Let first and last are the pointer to the first node and last 
node in the current list respectively.
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Singly Linked List – Deletion from the Specific Position

1.Start

2.If (first==null) then

Print “void deletion” and exit;

3.Else if(first == last)

Print deleted item as first→ info;

first=last=null;

4. Else

 temp=first

 for(i=1;i<pos-1;i++)

  temp=temp → next

5. loc = temp → next 

6. Print deleted item is loc → info 

7. Set temp→next=loc → next

8. free(loc)

9. Stop
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Singly Linked List – Searching

✔ Let first and last are the pointer to the first node and last node in the 
current list respectively. 

✔ key is the value we are searching for in our linked list.
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Singly Linked List – Searching

1. Start

2. Initialize flag = 0

3. If (first == null) then Display “List is Empty” and exit.

4. Else

temp = first

while(temp → next != null)

if(temp → info == key)

Display “Search Successful” and Set flag=1;

temp=temp → next;

5. if(flag==0) then Display “Search Unsuccessful”

6. Stop
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Self Study

✔ Analyze the insertions, deletions and searching operations 
in a SLL.
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Binary Search Trees

✔ A binary search tree (BST), sometimes also called an ordered or sorted 
binary tree, is a binary tree data structure which has the following properties

- The left subtree of a node contains only nodes with keys less than or 
equal to the node's key.

- The right subtree of a node contains only nodes with keys greater than 
or equal to the node's key.

- The left and right subtree must each also be a binary search tree.
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Binary Search Trees
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Binary Search Trees

✔ The keys in a binary search tree are always stored in such a way as to 
satisfy the binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left subtree 
of x, then y.key ≤ x.key. If y is a node in the right subtree of x, then 
y.key ≥ x.key.
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Binary Search Trees

✔ The binary-search-tree property allows us to print out all the keys in a 
binary search tree in sorted order by a simple recursive algorithm, 
called an inorder tree walk.

✔ This algorithm is so named because it prints the key of the root of a 
subtree between printing the values in its left subtree and printing 
those in its right subtree.



08/05/22 Created by Pukar Karki, IOE 93

Binary Search Trees

INORDER-TREE-WALK(x)

{

 if x ≠ NIL

 {

 INORDER-TREE-WALK(x.left)

Print x.key

INORDER-TREE-WALK(x.right)

}

}
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Binary Search Trees

INORDER-TREE-WALK(x)
2, 5, 5, 6, 7, 8

INORDER-TREE-WALK(x)
2, 5, 5, 6, 7, 8
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Binary Search Trees

✔ Similarly, a preorder tree walk prints the root before the values in 
either subtree, and a postorder tree walk prints the root after the 
values in its subtrees.
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Binary Search Trees - Searching

✔ Given a pointer to the root of the tree and a key k, TREE-SEARCH 
returns a pointer to a node with key k if one exists; otherwise, it 
returns NIL.
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Binary Search Trees - Searching

To search for the key 13 in the tree, we follow the path 15 →  6 →  7 →  13 from the root.
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Binary Search Trees - Searching

TREE-SEARCH(x, k)
{
 if x == NIL or k == x:key
 return x
 if k < x:key
 return TREE-SEARCH(x.left, k)
 else
 return TREE-SEARCH(x.right,k)
}

The nodes encountered during the recursion form a simple path 
downward from the root of the tree, and thus the running time of TREE-
SEARCH is O(h), where h is the height of the tree.
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Binary Search Trees - Searching

ITERATIVE-TREE-SEARCH(x, k)
{
 while x ≠ NIL and k ≠ x.key
 {
 if k < x.key
 x = x.left
 else
 x = x.right
 }
 return x
}
The nodes encountered during this iterative version form a simple path 
downward from the root of the tree, and thus the running time of TREE-
SEARCH is O(h), where h is the height of the tree.
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Binary Search Trees - Minimum

✔ We can always find an element in a binary search tree whose key is a 
minimum by following left child pointers from the root until we 
encounter a NIL.
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Binary Search Trees - Minimum

The minimum key in the tree is 2, which is found by 
following left pointers from the root.
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Binary Search Trees - Minimum

TREE-MINIMUM(x)

{

 while x.left ≠ NIL

 x = x.left

 return x

}

This procedure runs in O(h) time on a tree of height h since, as in 
TREE-SEARCH, the sequence of nodes encountered forms a simple 
path downward from the root.
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Binary Search Trees - Maximum

✔ Similarly, we can always find an element in a binary search tree 
whose key is a maximum by following right child pointers from the 
root until we encounter a NIL.
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Binary Search Trees - Maximum

The maximum key 20 is found by following right 
pointers from the root.
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Binary Search Trees - Maximum

TREE-MAXIMUM(x)

{

 while x.right ≠ NIL

 x = x.right

 return x

}

This procedure runs in O(h) time on a tree of height h since, as in 
TREE-SEARCH, the sequence of nodes encountered forms a simple 
path downward from the root.
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Binary Search Trees - Insertion

✔ To insert a new value Z into a binary search tree T , we use the 
procedure TREE- INSERT.

✔ The procedure takes a node Z for which Z.key = v and  Z.left = NIL, 
and Z.right = NIL. 

✔ It modifies T and some of the attributes of Z in such a way that it 
inserts Z into an appropriate position in the tree.
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Binary Search Trees - Insertion

TREE-INSERT(T, Z)

{

y = NIL

x = T.root

while x ≠ NIL

{

 y = x

 if Z.key < x:key

  x = x.left

 else

  x = x.right

}´

Z.p = y

if y == NIL
 T.root = Z // tree T was empty

else if Z.key < y.key
 y.left = Z

else 
 y.right =  Z

Like the other primitive operations 
on search trees, the procedure 
TREE-INSERT runs in O(h)time on a 
tree of height h.
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Binary Search Trees - Insertion
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Binary Search Trees - Deletion

The overall strategy for deleting a node Z from a binary search tree T has 
three  basic cases

1. If Z has no children, then we simply remove it by modifying its parent 
to replace Z with NIL as its child.

2. If Z has just one child, then we elevate that child to take Z’s position 
in the tree by modifying Z’s parent to replace Z by Z’s child.

3. If Z has two children, then we find Z’s successor y—which must be in 
Z’s right subtree—and have y take Z’s position in the tree. The rest of 
Z’s original right subtree becomes y’s new right subtree, and Z’s left 
subtree becomes y’s new left subtree. This case is the tricky one 
because, as we shall see, it matters whether y is Z’s right child.
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Binary Search Trees - Deletion

✔ The procedure for deleting a given node Z from a binary search tree T 
takes as arguments pointers to T and Z. It organizes its cases a bit 
differently from the three cases outlined previously by considering the 
four cases.
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Binary Search Trees - Deletion

1. If Z has no left child , then we replace Z by its right child, which may 
or may not be NIL. When Z’s right child is NIL, this case deals with 
the situation in which Z has no children. When Z’s right child is non-
NIL, this case handles the situation in which Z has just one child, 
which is its right child.
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Binary Search Trees - Deletion

2. If Z has just one child, which is its left child, then we replace Z by its 
left child.
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Binary Search Trees - Deletion

3. Otherwise, Z has both a left and a right child. We find Z’s successor y, 
which lies in Z’s right subtree and has no left child. If y is Z’s right 
child , then we replace Z by y, leaving y’s right child alone.
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Binary Search Trees - Deletion

4. Otherwise, Z has both a left and a right child. We find Z’s successor y, 
which lies in Z’s right subtree and has no left child. Otherwise, y lies 
within Z’s right subtree but is not Z’s right child. In this case, we 
first replace y by its own right child, and then we replace Z by y.
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Self Study

✔ Write an algorithm to delete a node in BST and analyze it.
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Graphs

✔ Definition: A simple graph G = (V, E) consists of V, a nonempty set of 
vertices, and E, a set of unordered pairs of distinct elements of V 
called edges.

✔ For each e  E, e = {u, v} where u, v  V.∈ ∈
✔ An undirected graph (not simple) may contain loops. An edge e is a 

loop if e = {u, u} for some u  V.∈
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Graphs - Types
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Graphs Representation

✔ We can choose between two standard ways to represent a graph G =(V, E) 
as a collection of adjacency lists or as an adjacency matrix.

✔ Either way applies to both directed and undirected graphs.

✔ Because the adjacency-list representation provides a compact way to 
represent sparse graphs—those for which it is usually the method of choice.

✔ We may prefer an adjacency-matrix representation, however, when the 
graph is dense.
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Graphs Representation

✔ Definition: Let G = (V, E) be a simple graph with |V| = n. 
Suppose that the vertices of G are listed in arbitrary order as v1, 
v2, …, vn. 

✔ The adjacency matrix A (or AG) of G, with respect to this listing 
of the vertices, is the n x n matrix with

aij = 1 if {vi, vj} is an edge of G, 

aij = 0  if there is no edge and 

aij = k if there are k(≥2) edges between the vertices.



•Example: What is the adjacency matrix 
AG for the following graph G based on the 
order of vertices a, b, c, d ?

Solution:





















0111

1001

1001

1110

GA

Note: Adjacency matrices of undirected graphs are always symmetric.

a

b

c

d

Graphs Representation



•Example: What is the adjacency matrix 
AG for the following graph G based on the 
order of vertices 1, 2, 3, 4, 5 ?

Solution:

Note: Adjacency matrices of undirected graphs are always symmetric.

Graphs Representation



•Example: What is the adjacency matrix 
AG for the following graph G based on the 
order of vertices 1, 2, 3, 4, 5, 6 ?

Solution:

Note: Adjacency matrices of undirected graphs are always symmetric.

Graphs Representation



✔ The adjacency matrix of a graph requires Θ(V2) memory, 
independent of the number of edges in the graph.

✔ Adjacency matrices are simpler, and so we may prefer them 
when graphs are reasonably small.

Graphs Representation
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Graphs Representation

✔ The adjacency-list representation of a graph G = (V, E) consists of an array 
Adj of |V| lists, one for each vertex in V.

✔ For each u  ∈V , the adjacency list Adj[u] contains all the vertices v such that 
there is an edge (u, v)  ∈E.

✔ That is, Adj[u] consists of all the vertices adjacent to u in G.



•Example: What is the adjacency list for 
the following graph G?

Solution:

Graphs Representation



Example: What is the adjacency list for the 
following graph G?

Solution:

Graphs Representation



Breadth-First Search

✔ Given a graph G = (V, E) and a distinguished source vertex s, 
breadth-first search systematically explores the edges of G to 
“discover” every vertex that is reachable from s. 

✔ It computes the distance (smallest number of edges) from s to each 
reachable vertex. It also produces a “breadth-first tree” with root s that 
contains all reachable vertices.



Breadth-First Search

✔ For any vertex v reachable from s, the simple path in the breadth-first tree 
from s to v corresponds to a “shortest path” from s to v in G, that is, a path 
containing the smallest number of edges.

✔ The algorithm works on both directed and undirected graphs.

✔ Breadth-first search is named so because it expands the frontier between 
discovered and undiscovered vertices uniformly across the breadth of the 
frontier. 

✔ That is, the algorithm discovers all vertices at distance k from s before 
discovering any vertices at distance k +1.



Breadth-First Search



Breadth-First Search



Breadth-First Search



Breadth-First Search



Breadth-First Search



Breadth-First Search



Breadth-First Search



Breadth-First Search



Breadth-First Search



Breadth-First Search



Breadth-First Search - Analysis

✔ After initialization, breadth-first 
search never whitens a 
vertex, and thus the test in 
line 13 ensures that each 
vertex is enqueued at most 
once, and hence dequeued at 
most once.

✔ The operations of enqueuing 
and dequeuing take O(1) time, 
and so the total time devoted 
to queue operations is O(V).



Breadth-First Search - Analysis

✔ Because the procedure scans 
the adjacency list of each 
vertex only when the vertex is 
dequeued, it scans each 
adjacency list at most once.

✔ Since the sum of the lengths 
of all the adjacency lists is 
Θ(E), the total time spent in 
scanning adjacency lists is 
O(E).



Breadth-First Search - Analysis

✔ The overhead for 
initialization is O(V), and 
thus the total running time 
of the BFS procedure is 
O(V+E).

✔ Thus, breadth-first search 
runs in time linear in the 
size of the adjacency-list 
representation of G.



Depth-First Search

Self Study
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Review Questions

1) Define big oh, big omega and big theta notations with suitable examples.

2) Find big oh and big omega of the following function

f(x) = 5n3 + 6n2 + 9n + 3

3) Explain why the statement, “The running time of algorithm A is at least O(n2),” is 
meaningless.

4) Illustrate the result of each operation in the sequence PUSH(S,4),PUSH(S, 1), PUSH(S,3), 
POP(S),PUSH(S,8), and POP(S) on an initially empty stack S stored in array S[0..5].

5) Explain and analyze the different operations in a stack.

6) Explain and analyze the different operations in a queue.

7) Implement a stack using a singly linked list L. The operations PUSH and POP 
should still take O(1) time.

8) Implement a queue by a singly linked list L. The operations ENQUEUE and 
DEQUEUE should still take O(1) time.
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Review Questions

9) Give recursive algorithms that perform preorder and postorder tree walks in Θ(n) time on a 
tree of n nodes.

10) Explain and analyze the different operations in a BST.

11)Show how depth-first search works on the graph of figure.

12) Explain and analyze breadth-first search in detail.
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